Unit 4: Summary Similarities and Differences Between Living Things

Review cell theory

- All living things made of cells
- Cells perform life functions
- Cells come from pre existing cells

What are life functions?

<u>Metabolism</u>

Chemical reactions needed to live

How does an amoeba perform life functions

How do multi-celled organisms perform life functions?

Human Body Systems

Work together to help organisms maintain homeostasis

Homeostasis = Dynamic Equilibrium

• Define and draw in your notes

Homeostasis in cells requires:

- Transport
- Communication
- Feedback mechanisms

Cell transport

• Passive transport = diffusion

Diffusion

 Movement from <u>high to low until it is</u> equal on both sides

What diffused through our fake cells in the diffusion through a membrane lab

- Water
- Starch indicator (iodine)
 - glucose

How do we know?

What didn't diffuse through the dialysis bags and why?

What can diffuse through cell membranes

Diffusion of water = <u>osmosis</u>

- What happens to a cell in pure water?
- Water moves in cell swells
- What happens to a cell in salt?
- Water moves out cell shrinks

So how do cells survive in freshwater ecosystems?

(b) When full, the vacuole and canals contract, expelling fluid from the cell.

Active transport

- Moves molecules from low to high
- REQUIRES ENERGY

Cellular communication

 Chemical messengers and receptor molecules are very specific because of their shape

<u>Hormones</u> = chemical messengers of the endocrine system

<u>Neurotransmitters</u> = chemical messengers of nerve cells

Both bind very specifically to receptor proteins in cell membranes

Feedback mechanisms maintain homeostasis

• <u>Stimulus = change in environment</u> \rightarrow <u>response</u>

Example in plants

• Cuard calle open and close atomates in leaves

Guard cells open and close stomates in leaves

Environment = Hot Dry

• Response = stomates close \rightarrow less transpriation

Image reproduced from Plant Physiology, Eds: L. Taiz and E. Zeiger, 2nd edition, Sinauer Associates, Inc. Publisher, Sunderland MA, USA. p. 523

Environment = cool and moist

• Response = stomates open \rightarrow more transpiration

 Body temp controlled by <u>sweating and</u> <u>shivering</u>

Ex: Glucose levels controlled by hormones

- Hi blood glucose \rightarrow pancreas \rightarrow
- insulin → decreases blood glucose
- Low glucose \rightarrow pancreas \rightarrow
- <u>another hormone (glucagon)</u> → <u>release</u> of sugar from liver

Feedback loops maintain blood glucose

Practice Homeostasis Questions

Life Functions =

Movement

helps us respond to the environment

111

2. 2.5%

Synthesis

• Making cell parts

Circulation

Waste removal

Digestion

<u>lysis = breakdown</u>

aDon Smith

Immunity

Protect against invaders

Coordination and regulation

<u>Communication and control</u>

Reproduction

DNA replicates → new cells

Organelles \rightarrow life functions

Body systems \rightarrow life functions

Multi-celled organisms only

Life function chart

Movement

- Purpose
- Helps living things respond to environment

Flagella = whiplike tail

Flagellar diversity in Euglena species.

Sperm use flagella

Skeletal muscle system

- Bones connected by ligaments
- Muscles connected by tendons

Respiration

- Purpose:
 - Release energy from food
- Types:
 - -<u>Aerobic</u> = with O₂
 - -<u>Anaerobic</u> = absence of O₂

Mitochondria

Respiration requires gas exchange =Respiratory system

Synthesis

- Purpose
 - Make things
- Examples:
 - photosynthesis
 - Protein synthesis

Chloroplasts absorb sunlight

Ribosomes \rightarrow protein synthesis

Circulation

Purpose =

• Transport of materials within an organism

Organelles = <u>Cytoplasm</u>

2 types of transport tissues in plants

• Xylem = carries water and nutrients up to leaves

•Phloem = carries sugar down to roots

water and minerals

no end walls between cells

> one-way only

outer cells are not living

PHLOEM

organic molecules

end walls (sieve plates)

> two-way movement

cells are living but need support

XYLEM

Circulation in plants

Human Circulatory System

Heart pumps blood through arteries, veins and capillaries

Lymphatic System

Lymph collects body fluids and checks for disease

Excretion

Purpose:

- Removal of cellular wastes
- Wastes include:
 - $-CO_2, H_2O,$
 - –heat, nitrogen wastes → urine and sweat

Organelle

Cell membrane

Excretory system

Kidneys filter blood \rightarrow urine

Digestion

Function

- Lysis = break down
 - Complex sugars \rightarrow simple sugars
 - Proteins \rightarrow amino acids
 - Fats \rightarrow fatty acids

Body system

- digestive system (lots of enzymes)
 - Organs (mouth, stomach, intestines)

Lysosomes (lots of acids and enzymes)

Digestive system

http://www.nlm.nih.gov/medlineplus/ency/images/ency/fullsize/1090.jpg
Digestive system

- Chemical digestion

 (enzymes and acids)
- Mechanical
 - Chewing and churning

Immunity

Purpose

- Prevent disease and kill pathogens
- Pathogens = disease causing organisms

Organelle = Cell membrane

Body system = immune system

White blood cells travel in blood and lymph

http://static.howstuffworks.com/gif/adam/images/en/white-blood-cell-count-results-picture.jpg

Coordination and regulation

Purpose

- Control life functions
- communication

Organelle = Nucleus

- Nucleus
 - $-DNA \rightarrow$ heredity
 - DNA \rightarrow enzymes \rightarrow chemical reactions

Nucleus

0

Nervous system

Nervous system

- Organs = brain and spinal chord
- Cells = nerve cells

Endocrine system

Endocrine system

Organs =

- glands release chemical messengers
- Called hormones

Reproduction

Purpose:

- Necessary for the continuation of life
- 2 types
- Asexual \rightarrow genetically identical offspring
- Sexual \rightarrow diversity

Organelle = nucleus

DNA replicates and cells split

Reproductive system

- Organs
 - -Females = ovaries \rightarrow eggs
 - -Males = testes \rightarrow sperm

Advantage of Sexual reproduction → increased diversity

MRS. CEDICR

- Movement
- Respiration
 - Synthesis
- Circulation
 - Excretion
 - Digestion
 - Immunity
- Coordination and regulation
 - reproduction

Cells and Tissues

- <u>https://www.youtube.com/watch?v=7bD</u>
 <u>pYZsC8mQ</u>
- Tissue rap

http://www.teachertube.com/video/4types-of-tissues-rap-464117