## Unit 3 Key vocabulary

- Adaptations =
- <u>Any trait or behavior that helps an organism</u> <u>survive or reproduce</u>





## **Natural Selection**

best adapted to the environment survive and reproduce



## Natural selection $\rightarrow$ <u>biodiversity</u>



## Define biodiversity

- Variety of life
- Variety of genetic material (DNA)
- more biodiversity = more stability

## What is the relationship between biodiversity and number of different populations?



## Unit 3 Key ideas

Biotic and abiotic factors interact → dynamic equilibrium





 Human decisions and activities often disrupt dynamic equilbrium



# What has happened to the dynamic equilibrium of atmospheric carbon?



### <u>Biomes</u> = Large geographic areas having similar ecosystems

#### Ex: desert, tundra, grasslands, tropical rainforests...



# List physical characteristics → the type of biome (community) in an area

- <u>Temperature</u>
- Latitude
- Precipitation
- <u>Altitude</u>



## Deserts: 0-25 cm precipitation / yr



Antarctic Polar



## **Desert adaptations**

- Plants and Animals adapted to
  - <u>Little water</u>
  - Cold nights and hot days

## Humans impact deserts



Overgrazing and climate change → desertification

#### <u>Desertification</u> = useful land converted to deserts

Human activities → increasing size and number of deserts





Extra heat evaporates water from the ocean and pulls moisture even more quickly from the soil

#### "I had 400 acres of wheat,

#### and now it's all desert."

• Ahmed Abdullah, Syrian farmer October 2010

## Causes of desertification

• Burning fossil fuels  $\rightarrow$  Climate change

 <u>Overgrazing</u> = too many farm animals eat too much plant material

## Grasslands

## Maintained by fire

## Seasonal droughts

a to to an

Copyright Chris Helzer/The N

## <u>Herbivores</u>







## More than <u>90% of US prairies have been lost</u> $\rightarrow$ <u>agriculture</u> $\rightarrow$



## Why is this a problem?

• Loss of biodiversity = loss of stability



Ohio

## **Oklahoma and Texas**

## **Overgrazing** → **desertification** and

## Removal of native grasses $\rightarrow$ increased erosion and loss of topsoil


• List 2 reasons why the dust bowl happened

Name 2 ways to prevent a dust bowl

# US Dust Bowl of the 1930's



# Solutions = plant cover crops



# Plant wind breaks (shrub borders)

# **Tundra**Found at <u>high latitudes</u> and <u>high altitudes</u>

©2005 Khanjan Mehta

#### High altitude $\rightarrow$ alpine tundra



# <u>Permafrost</u> = permanently frozen ground

# <u>Climate change $\rightarrow$ melting permfrost</u> $\rightarrow$ poor drainage $\rightarrow$ boggy conditions







# Guiding question for slideshow

- Life in the tundra is challenging
- How have Inuit peoples of the Canadian arctic managed to survive for generations



# Meet Elijah Tigullaraq



# And His wife Naomi

# They live in Pond Inlet in the Canadian province of Nunavat



http://www.turtletrack.org/Issues04/Co05222004/CO\_05222004\_NunavatEl ders.htm



































### **Tundra Communities**

#### • Autotrophs = <u>Only low lying plants</u>

 <u>Lichen</u> (mutualistic relationship between a <u>fungus and</u> <u>an algae</u>) are a favorite food of caribou

- Animal kingdom adaptations = often <u>migrate</u> or <u>hibernate</u> underground during the winter
- Lots of insects in summer due to boggy conditions

©2005 Khanjan Mehta

#### Human Impacts on tundra

 Development and overuse → long lasting effects because the tundra has <u>very slow rates of</u> <u>decomposition</u> and <u>nutrient cycling</u>

©2005 Khanjan Mehta
# **Ex: Injury from oil drilling**

#### Hiking can destroy alpine tundra



• Global warming  $\rightarrow$ melting permafrost  $\rightarrow$  Releases methane gas  $\rightarrow$ increased global warming (positive feedback mechanism)



#### **Coniferous forests**

- Also called <u>taiga</u> or <u>boreal</u> forests
- Plants: <u>Fir, spruce, pine, larch, and other short</u> <u>growing trees and shrubs</u>
- Animals/Fauna:
  - Large herbivores (moose, elk),
  - small herbivores (snowshoe hare, squirrels),
  - predators (wolves, foxes, bears, lynx, weasels, owls),
  - <u>many insects and birds in the summer</u>

#### Largest land biome



#### Human Impacts: Burning fossil fuels $\rightarrow$ acid rain

# Deforestation → loss of habitat and climate change

Feb. 1922

#### **Deciduous Forests**

- Plants: Broad leafed plants (<u>maple, beech,</u> <u>birch, oak...</u>)
- Animals: <u>adapted to seasons (hibernation,</u> <u>migration)</u>
- Human Impact: <u>acid rain, logging, most</u> <u>carnivores eliminated by over-hunting</u>

#### Deciduous trees play a major role in the water cycle water loss from plants = \_\_\_\_\_



http://water.tamu.edu/watercycle.html

# **Beak adapations**

#### Temperate rainforests of the world



#### **Temperate Rainforests (NW coast)**

#### • Plants:

 – <u>Pine, spruce, fir, vines,</u> <u>mosses, lichen, ferns</u>

#### Animals:

- Herbivores: <u>squirrels, mule</u> <u>deer, elk</u>,
- Predators: <u>bear and eagle</u>



#### Human Impacts Logging → habitat loss and extinctions



## Burning fossil fuels (esp. coal ) → acid rain

Jizera mountain

in

Poland



## Example of a temperate forest = Tongass National Forest



- 17 million acres
- World's largest temperate rain forest
  - Resource use vs. conservation

# USDA Forest service tries to balance resource use with conservation



#### Northeastern's School for Field Studies 1989







# Why were eagles extinct in the lower 48 states in the 1980s

## **Pesticides like DDT**

1.35

DAIRY CATTLE

WETTABLE POWDER

INSEC



STANDARD

ble Flies Horn Flies House Flies Mosquitoes

(SUGAR BAS

**>** 



Active Ingredients:

Xylana.

2 Bait



Dura Dust No. 50 \*

POISON

Controls Leafhoppers, Flea Beetles, Potato Aphids, Plant Bugs, Codling tinters, Japanese









#### Problem = Biological Magnification



Some pollutants build up as they move up the food chain

#### Ex: <u>DDT = pesticide that kills insects</u>

 Sprayed to kill mosquitoes

 Mosquito consumers get lots of DDT



#### <u>Top predators</u> consume concentrated amounts of toxins

## **Bald eagles almost went extinct**

# Title: Biological magnification



#### READ ARTICLE IN NOTES ABOUT HOW BALD EAGLES WERE SAVED AND ANSWER QUESTIONS

#### **Tropical rainforests of the world**



#### • **<u>Biodiversity</u>** = lots of different species



Tropical rainforests = Biodiversity Hotspots

#### Human Impacts

- <u>Deforestation and over-harvesting</u> →
  - Most exploited and endangered biome
- Rainforests are cleared for <u>agriculture, logging, and</u> <u>mining</u> →
  - loss of topsoil and depletion of soil nutrients
- Many organisms that live in rainforests are headed towards extinction

Clear cutting → increased erosion →
water pollution and kills organisms in rivers and streams
# Why we should care about extinction rates

• <u>Diversity</u>  $\rightarrow$  <u>stability</u>

Remove one species affect many

• <u>Diversity</u>  $\rightarrow$  <u>resources</u>

 − Ex: different species → <u>medicines, food, building</u> <u>materials...</u>

#### Human causes $\rightarrow$ loss of biodiversity

- 1. <u>Habitat destruction</u>
  - Examples
    - <u>black rhino,</u>
    - <u>African and Asian</u>
       <u>elephants</u>





Probable range 1600 Range loday

African Elephant

(600.000 left)



in high a consequence of a set based of the set

## Humans $\rightarrow$ loss of biodiversity

- 2. <u>Direct harvest</u>or exploitation
  - Example
    - Mountain gorillas shot for bushmeat and trophies
    - Overfishing → loss of many fish species
  - Watch planet in peril clip: victims of the black market



zoo/news/shocking-images-of-mountain-gorilla-family-shot-dead,377,NS.htmlmages-ofmountain-gorilla-family-shot-dead,377,NS.html

## 3) Introduction of <u>non-native invasive</u> <u>species</u>

- Non-natives often have <u>no natural predators</u>
- Often <u>reproduce faster</u> or earlier than native species
- Compete with natives → native species to decline

Watch "Protecting the Adirondacks from Invasive Species"

#### Non-native invasive species



Purple loosestrife



Phragmites



Eurasian water milfoil



Gypsy moths



Zebra mussels



Asian longhorn beetles

#### **Emerald Ashborer**





http://www.bayweekly.com/year09/issue\_26/art-26/Dock-26/Emerald-Ash-Borer-trap.gif

#### Example: Brown Tree Snake

## accidentally introduced to Guam $\rightarrow$ decimated native bird species



Picture taken by Michael Murphey In Costa Rica

### 4) <u>Pollution</u> A) ex: burning fossil fuels $\rightarrow$



#### Sulfur and nitrogen oxides → <u>acid rain</u> Affects water and forest ecosystems



#### Particulate matter $\rightarrow \underline{smog} \rightarrow$ decreased photosynthesis and respiratory problems



#### $CO_2 = greenhouse gas \rightarrow global$ climate changes $\rightarrow$

<u>Changing weather patterns and rising sea</u>
 <u>levels</u> → changes habitats



#### B) ex: Biological magnification of toxins



#### Part II. Aquatic biomes



#### Aquatic biomes

- Affected by salt, pressure, light, nutrients, pH
- Light and <u>nutrients</u> = <u>limit</u> algae growth
- <u>71%</u> earths surface = water
  - <u>3%</u> is freshwater (less than 1% salts / vol. of water)

#### Human Impacts on lakes and rivers

## Aging of lakes (Eutrophication)

 Runoff water → <u>adds nutrients to lake =</u> <u>eutrophication</u>



- Human activities increase the rate of eutrophication
  - Ex: fertilizer runoff and sewage contamination - Inc. nutrients  $\rightarrow$  increased algae  $\rightarrow$
  - $\underline{\text{Algae run out of sunlight}} \rightarrow \underline{\text{die}}$  $\underline{\text{increased decomposition}} \rightarrow \underline{\text{dec. oxygen}}$

### Human impacts

- Overfishing → major cause of declines in worldwide fish populations recently
- <u>https://www.natureworkseverywhere.org/resources</u>
   <u>/fishing-for-a-future/</u>
- Loss <u>of biodiversity</u> = loss of <u>stability</u> in aquatic ecosystems

#### **Define Ecological Succession**





## 10 years later

## e hundred years later





#### **Ecological succession**

- <u>Succession = Change in an ecosystem after a disturbance</u> over time
- One biotic community gradually  $\rightarrow$  another
- Pioneer communities  $\rightarrow$  climax communities



#### Pioneer organisms

• First to establish after a disturbance



#### Lichen on a rock (lichen = algae and fungi = mutualism)



#### Grasses on a sand dune

http://www.livingwilderness.com/patterns/juniper-dunes-grass.jpg

#### **Climax Community = stable community**

#### **Climax Communities**



### **Climax communities**

- <u>Climax community = Stable</u>
- Type of climax is determined by climate

   Latitude, precipitation, and altitude
   Ex: Coniferous forest in Taiga regions
- Will remain until a disturbance occurs

## Until there is a disturbance

- Can be natural
  - <u>Flood</u>
  - <u>Fire</u>
  - Volcanic eruption
- Or manmade
  - Abandoned farm
  - Pollution







#### ECOLOGICAL SUCCESSION



#### SUBSISTANCE STRATEGIES

© WWW.URJIANSCOUT.ORG 2007

#### Runoff and eutrophication $\rightarrow$ Aquatic succession



1960