Decomposers recycle nutrients (matter) but <u>ENERGY IS ALWAYS</u> LOST

What does this mean to us

- Stable ecosystems have a <u>continual input of energy</u>
- And more producers than consumers
- It takes less energy to produce plants than it does animals

 Eating diet containing a lot of meat uses more <u>energy</u> and more land <u>space</u> to produce

What do the next 3 organisms have in common?

WHAT MAKES SOMETHING A TOP PREDATOR?

No natural enemies

Energy is <u>lost</u> as you go up the food chain

Decomposers recycle nutrients but <u>ENERGY IS ALWAYS LOST</u>

Stable ecosystems have a continual input of energy

Stable ecosystems have more producers than consumers

It takes <u>less</u> energy to produce plants than it does animals

$\frac{\text{Need to grow}}{\text{energy and more land space to}}$ $\frac{\text{produce food for the animal} \rightarrow}{\text{meat}}$

LET'S GET BACK TO

ENERGY

MAKE A MODEL of how you think PHOTOSYNTHESIS works.

HOW DO PLANTS PRODUCE ENERGY?

Unit 2: part 3 Population Ecology

Smallest to biggest

- <u>Population</u> \rightarrow
- <u>Community</u> \rightarrow
- <u>Ecosystem</u> \rightarrow
- <u>Biosphere</u>

2. Which cell structure would be found in plant cells, but not in animal cells?

- a) Cell membrane
- b) Nucleus
- c) Mitochondria
- d) Chloroplast

 The diagram below shows mushrooms, a type of decomposer, growing on a rotting log.

Which is true about the relationship between the mushroom and the log

- a. The log uses the mushrooms as a source of oxygen
- b. The log uses the mushrooms as a food source
- c. The mushrooms use the log as a source of oxygen
- d. The mushrooms use the log as a food source

 The model below represents the relative wavelengths of different forms of electromagnetic energy.

List two forms of electromagnetic energy that have shorter wavelengths than visible light.

Identify 2 organisms that belong to the plant kingdom

 Explain one reason why the population of marsh grass might increase if the populations of herons decreased

Review

- 1. Food chains show <u>energy</u> flow through ecosystems
- 2. Energy goes in <u>one</u> direction in ecosystems
- Energy is always <u>lost</u> as it flows through ecosystems
- 4. To be stable <u>energy</u> always has to be added to ecosystems
- Energy for most ecosystems comes from the sun

Population Dynamics

All populations have the potential for exponential growth

- 1→
- 2→
- 4**→**
- <u>8</u>→
- <u>16</u>→
- <u>32</u>→ • <u>64</u>→...

Human Population Growth

- World population
- 1 bil 1804
- 2 bil 1927 (123yrs)
- 3 bil 1960 (33 yrs)
- 4 bil 1974 (14 yrs)
- 5 bil 1987 (13 yrs)
- 6 bil 1999 (12 yrs)
- 7 bil 2012 (13 yrs)

World Population Growth Through History

by the Population Reference Bureau

Human Population Growth

8

- 3. Then again in the 1950's the growth rate increased again. What might have been the cause of this spike?
 - better sanitation and medicines

<u>Limiting factors</u> anything that prevents a population from growing too large

- Examples:
 - <u>Food</u>
 - <u>Space</u>
 - <u>Oxygen</u>
 - <u>Nutrients</u>
 - <u>Disease</u>
 - Light (for plants)

Examples of limiting factors for algae

Sunlight
N and P
Salt
Water
Temperature

Examples of limiting factors for predators

Prey Mates Space

Disease

Examples of limiting factors for herbivores

Predators
Plant populations
Disease
Climate
Competition

Vocabulary

Moose habitat

Penguin habitat

a price

Define habitat

• Where an organism lives

Niche = an organisms job or role

Examples

Bees pollinate flowers

Worms aerate soils

Predators control prey populations

Decomposers recycle nutrients

What happens when organisms live in the same habitat and occupy the same niche?

Competition = fight for resources

Carrying capacity

 <u>Maximum # individuals an ecosystem can</u> <u>support</u>

<u>What happens when populations go</u> <u>past the carrying capacity???</u>

Living things interact with each other \rightarrow <u>community</u>

Relationships between species

- Predator / Prey
 - <u>Predator</u> = <u>hunter</u>
 - -<u>Prey</u> = <u>hunted</u>
 - Need to have
 - more prey then predators to be stable

PREDATOR / PREY CYCLE of animal HELES (pray) time

http://www.bbc.co.uk/wales/eclips/pages/eng_11to14_bio_livingthings_prey.shtml

Symbiotic Relationships

- Close association of 2 species
 - Direct Contact
 At least one organism benefits
- >3 types
 ><u>Mutualism</u>,
 ><u>commensalism</u>,

Mutualism

- <u>Mutualism (+,+)</u>
- Both organisms benefit

Examples: <u>nitrogen fixing</u> bacteria on roots of plants

sciencephotolib

Anemone/Clownfish Clownfish gets protection Anemone gets food

Commensalism

- <u>Commensalism (+, 0)</u>
- One organism benefits, other organism remains unharmed
- Example:

Barnacles Of A Humpback Whale

Example Commensalism:

• Epiphytes on trees in the rainforest

Parasitism

- Parasitism (+, -)
- One sided relationship
- Parasite benefits, the other (HOST) is harmed
- Example

Lamprey on a fish

Insects can carry parasitic disease causing organisms

- Examples
- Mosquitoes carry <u>West Nile Virus and malaria</u> <u>parasites</u>
- Deer ticks carry bacteria \rightarrow <u>lyme disease</u>

Pathogen

- Pathogen = <u>disease causing organism</u>
- Examples
 - Virus = <u>influenza virus</u>, HIV, ebola virus
 - Bacteria = <u>Streptoccocus bacillus, E. Coli</u>
 - Protist = <u>Plasmodium → Malaria, Giardia</u>

Key ideas

• Plants and animals depend on each other and their physical environment.

 Human decisions and activities have had a profound impact on the physical and living environment.

Key vocabulary

- Adaptations =
- Any characteristic or trait that helps an organism survive

Review Questions

- 1. What is the difference between a population and a community?
- 2. Define limiting factor and give an example
- 3. Draw an example of a food web for the following community
 - mice, rabbits and deer are both eating grasses in a field, mice are the main food for owls and kestrels, coyotes eat mainly deer but will also feed on mice and rabbits
- 4. State what will happen to this community if the coyotes are removed