4 ways to measure populations

- Density = \# / area
- Dispersion = spacial arrangement
- Age distribution
- Growth rates =
- (births+immigrants) - (deaths+ emigrants)

Math Practice

- Use the 2016 population data sheets to determine the population density of each of the following countries in mi^{2}
- Note that $2.6 \mathrm{~km}^{2}=1 \mathrm{mi}^{2}$
- USA $=9.2$ million km^{2}
- China $=9.3$ million km^{2}
- India $=3.0$ million km^{2}
- Ireland = 69 thousand km^{2}

Population Dynamics

1) Population Density

- Affected by:
- Social structure
- Mating relationships
- Time of year
- Availability of resources

2) 3 types of population dispersion patterns =

Clumped

Uniform

Random

a) Clumping $=$ most common

- Why?
- Resources are often clumped
- Social organizations
- Ex: flock of birds, herds of herbivores, pack of wolves

b) Uniform spacing is rare

- What causes it
- antagonism or even resource distribution
- Ex: creosote bush $=$ desert shrub \rightarrow herbicides

C) Random dispersion

- Due to random distribution of seeds or offspring
- Ex: dandelions

3) Age structure diagrams

- Populations divided into 3 age categories
- Pre-reproductive
- Reproductive
- Post-reproductive

Old growth lab

Size Distribution Class

Age Structure Diagrams

Stable

- 2015 Pearson Education, Inc.

High \# pre-reproductive and reproductive age \rightarrow growth

Guatemala
Nigeria
Saudi Arabia

Mostly post-reproductive \rightarrow no growth or declines

Practice math in notes

Measuring population growth

2 Types of growth curves

- Exponential (J shaped curves)

- Logistic (S shaped curves)

Exponential Growth

- Occurs in the absence of limiting factors
- Independent of population density

- Cannot continue forever

Biotic potential =

- Maximum rate of increase for a population in a limitless environment
- Biotic potential = exponential in a limitless environment

Examples of species with a high biotic potential

- Any species that reproduce early and rapidly
- Mice
- Rabbits
- Insects

Name a species with a low biotic potential

- Elephants (22 month gestation period)
- Whales (15-18 months)

Doubling time/ Rule of 70

- Doubling time = time that it takes for an exponentially growing population to double
- D.T. = 70 / percent increase
- Ex. What is the doubling time of a rabbit population that is increasing at a rate of $=$ 150\%
D.T. =

$$
\underline{70 / 150=}
$$

0.467 years

Use factor label method to convert \rightarrow months

Answer $=5.6$ months

If you had 5 rabbits in the starting population how many would you have in 5.6 months?

How about 11.2 months?

Practice Doubling Time Problems on handouts

Environmental Resistance =

- Limits that prevent organisms from reaching their biotic potential

2 factors that limit population growth

- Density - independent factors
- Density - dependent factors

Density independent factors

- Affect populations randomly regardless of density
- Physical factors
- Ex: rainfall, temperature, salinity, acidity...
- Catastrophic events
- Ex: hurricanes, tornadoes, fire, drought, floods
- Poor regulators of population

Density-dependent factors

- Affect populations when densities are high
- Examples:
- Disease, competition, predation, parasitism
- Good regulators of populations \rightarrow stable population

Carrying Capacity (K)

- Maximum \# individuals an ecosystem can support

2 scenarios

- As a population approaches carrying capacity
$\rightarrow 2$ possible outcomes =
- Overshoot then crash -or-
- Stabilize around the carrying capacity

Over-shoot K then crash

- Ex: St. Matthew Island, Alaska
- $1910=26$ reindeer introduced
- $1935=26 \rightarrow 2000 \rightarrow$ overgraze \rightarrow crash

Populations stabilize near K

- Logistic growth
- Ex: population of sheep introduced to Tasmania in early 1800s

Population Growth Rates

- Depends on:
- Birth rates
- Death rates
- Immigration (in)
- Emigration (out)

Population

$=\underline{\text { initial population }+(B+I)-(D+E)}$

Birth rates and death rates

- Can be expressed as a percent

$$
\%=\# / 100
$$

- Crude births or deaths = out of 1000

$$
C B=\text { births } / 1000
$$

Population growth rate (r) is always expressed as a percent

- $r=\frac{\text { Crude births }- \text { Crude deaths }}{10}$ OR
- $r=\%$ births $-\%$ deaths

Practice math

Percent growth (r)

- If a population growing at a rate of 2% per year $=2$ new individuals are added to the population for every 100 already present per year.
- $r=b-d$ if there is no net migration
- Net migration = immigration - emigration
- Population growth rates $=(B+I)-(D+E)$
- Or
- Population growth rates $=(B-D)+$ net migration

Population growth rates

- Growth occurs when $(b+i)>(d+e)$
- Zero population growth (ZPG) occurs when $(\underline{b+i})=(d+e)$
- A neg growth rate = shrinking population

$$
-(b+i)<(d+e)
$$

Define tragedy of the commons and give examples

- Unregulated use of commons \rightarrow unsustainable \rightarrow degradation of resources
- Examples:
- overfishing of oceans \rightarrow many species are commercially extinct
- Overgrazing in marginal regions \rightarrow desertification

Tragedy of the commons \rightarrow human population crashes

- Ex: Irish potato famine 1845 (too many people growing 1 crop) \rightarrow killed 1 million and forced 3 million to emigrate

Ex: Easter Island in the South Pacific

- Population 10,000 in the 1400 s
- Cut down the palm trees faster than they could grow back
- \rightarrow springs and streams dried up, no trees to build canoes for fishing
- \rightarrow crashed $\rightarrow 2,000$ by 1722

Reproductive (Life History) Strategies

- Species need to produce as many offspring as possible
- Organisms have a limited amount of energy \rightarrow life and reproduction \rightarrow trade off

Long life vs. High reproduction rate

Two main types of species:

- r-strategists,
- K-strategists

r-strategists

- Spend most of their time in exponential growth \rightarrow maximize reproductive rates

Characteristics of r strategists

- Small
- Short life span
- Lots of offspring
- Little to no care of offspring
- Generalists (not picky)
- High birth and high death rates
- ex: dandelions, insects, mice....

K - strategist

- Species maintain their population levels at the carrying capacity (K)

Characteristics of K strategists

- Larger
- Fewer offspring
- Later reproductive age and longer life
- Adults care for young
- Slower growth rates
- Specialized niche
- Highly competitive
- Ex: Elephants, humans, bears

ELEPHANII
 BIRTH

7ne Braat Suely Fiends

Survivorship curves = relationships between age and mortality

Age

