4 ways to measure populations

Density = <u># / area</u>

• Dispersion = spacial arrangement

• Age distribution

- Growth rates =
 - (births+immigrants) (deaths+ emigrants)

Math Practice

- Use the 2016 population data sheets to determine the population density of each of the following countries in mi²
- Note that 2.6km² = 1mi²
 - USA = 9.2 million km²
 - China = 9.3 million km²
 - India = 3.0 million km²
 - Ireland = 69 thousand km²

Population Dynamics

1) Population Density

- Affected by:
 - Social structure
 - Mating relationships
 - Time of year
 - Availability of resources

2) 3 types of population dispersion patterns =

a) Clumping = most common

- Why?
- <u>Resources are often clumped</u>
- Social organizations
- Ex: flock of birds, herds of herbivores, pack of wolves

b) Uniform spacing is rare

- What causes it
- <u>antagonism or even resource distribution</u>
- Ex: creosote bush = desert shrub \rightarrow herbicides

C) Random dispersion

- Due to random distribution of seeds or offspring
- Ex: dandelions

3) Age structure diagrams

• Populations divided into 3 age categories

- <u>Pre-reproductive</u>
- <u>Reproductive</u>
- <u>Post-reproductive</u>

Old growth lab

Size Distribution Class

DBH class

Age Structure Diagrams

High # pre-reproductive and reproductive age \rightarrow growth

Mostly post-reproductive \rightarrow no growth or declines

Practice math in notes

Measuring population growth

2 Types of growth curves

<u>Exponential</u> (J shaped curves)

Logistic (S shaped curves)

Exponential Growth

 Occurs in the absence of limiting factors

 Independent of population density

Biotic potential =

 Maximum rate of increase for a population in a limitless environment

 <u>Biotic potential = exponential in a limitless</u> <u>environment</u>

Examples of species with a high biotic potential

- Any species that reproduce early and rapidly
- <u>Mice</u>
- <u>Rabbits</u>
- Insects

Name a species with a low biotic potential

- Elephants (22 month gestation period)
- Whales (15-18 months)

Doubling time/ Rule of 70

- Doubling time = time that it takes for an exponentially growing population to double
- D.T. = <u>70 / percent increase</u>
- Ex. What is the doubling time of a rabbit population that is increasing at a rate of = 150%

0.467 years

Use factor label method to convert \rightarrow months

Answer = 5.6 months

If you had 5 rabbits in the starting population how many would you have in 5.6 months?

How about 11.2 months?

Practice Doubling Time Problems on handouts

Environmental Resistance =

 Limits that prevent organisms from reaching their biotic potential

2 factors that limit population growth

- <u>Density independent factors</u>
- <u>Density dependent factors</u>

Density independent factors

- Affect populations randomly regardless of density
- Physical factors
 - Ex: rainfall, temperature, salinity, acidity...
- Catastrophic events
 - Ex: <u>hurricanes, tornadoes, fire, drought, floods</u>
- Poor regulators of population

Density-dependent factors

Affect populations when densities are high

- Examples:
 - Disease, competition, predation, parasitism
- Good regulators of populations → stable population

Carrying Capacity (K)

 Maximum # individuals an ecosystem can support

2 scenarios

As a population approaches carrying capacity
 → 2 possible outcomes =

- Overshoot then crash -or-
- <u>Stabilize around the carrying capacity</u>

Over-shoot K then crash

- Ex: St. Matthew Island, Alaska
- 1910 = 26 reindeer introduced
- 1935 = $26 \rightarrow 2000 \rightarrow \text{overgraze} \rightarrow \text{crash}$

Populations stabilize near K

- Logistic growth
- Ex: population of sheep introduced to Tasmania in early 1800s

Population Growth Rates

- Depends on:
- Birth rates
- Death rates
- Immigration (in)
- Emigration (out)

Population

= initial population + (B+I) – (D+E)

Birth rates and death rates

Can be expressed as a percent

% = #/100

Crude births or deaths = out of 1000
 CB = births / 1000

Population growth rate (r) is always expressed as a percent

r = <u>Crude births – Crude deaths</u> OR 10

• r = % births - % deaths

Practice math

Percent growth (r)

- If a population growing at a rate of 2% per year = 2 new individuals are added to the population for every 100 already present per year.
- r=b-d if there is no net migration
- Net migration = immigration emigration

- Population growth rates = (B + I) (D+E)
- Or
- Population growth rates = (B-D) + net migration

Population growth rates

Growth occurs when (b+i) > (d+e)

- <u>Zero population growth</u> (ZPG) occurs when
 (b+i) = (d+e)
- A neg growth rate = shrinking population
 (b+i) < (d+e)

Define tragedy of the commons and give examples

• <u>Unregulated use of commons</u> \rightarrow <u>unsustainable</u> \rightarrow degradation of resources

- Examples:
 - overfishing of oceans → many species are commercially extinct
 - Overgrazing in marginal regions \rightarrow desertification

Tragedy of the commons → human population crashes

Ex: Irish potato famine 1845 (too many people growing 1 crop) → killed 1 million and forced 3 million to emigrate

Ex: Easter Island in the South Pacific

- Population~10,000 in the 1400s
- Cut down the palm trees faster than they could grow back
- → springs and streams dried up, no trees to build canoes for fishing
- \rightarrow crashed \rightarrow 2,000 by 1722

Reproductive (Life History) Strategies

 Species need to produce as many offspring as possible

Organisms have a limited amount of energy →
 life and reproduction → trade off

Long life vs. High reproduction rate

Two main types of species:

- <u>r-strategists</u>,
- <u>K-strategists</u>

r - strategists

Spend most of their time in exponential growth → maximize reproductive rates

Characteristics of r strategists

- Small
- Short life span
- Lots of offspring
- Little to no care of offspring
- Generalists (not picky)
- High birth and high death rates
- ex: dandelions, insects, mice....

K - strategist

• Species maintain their population levels at the carrying capacity (K)

Characteristics of K strategists

- Larger
- Fewer offspring
- Later reproductive age and longer life
- Adults care for young
- Slower growth rates
- Specialized niche
- Highly competitive
- Ex: Elephants, humans, bears

Survivorship curves = relationships between age and mortality

@Brooka/Cole Publishing Company//TP

Age