Mendelian Genetics

Evolutionary Timeline

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Gregor <u>Mendel</u> (1822-1884)

- Studied <u>peas</u>
- · → Laws for <u>inheritance of</u> <u>Traits</u>

Described offspring from 28,000 pea crosses

MENDE

Mendel's Pea Plant Experiments

Selective Breeding

• Humans control the mating or breeding of plants and animals \rightarrow desired traits

Selective Breeding =

List Pros and Cons of selective breeding

Why peas, Pisum sativum?

lots of offspring = lots of data

Pea flowers have male and female parts

•Pollen contains sperm –Produced by the <u>stamen</u>

•Flowers contain eggs –Produced in an <u>ovary</u>

<u>Self-pollinate \rightarrow pure bred plants</u>

<u>Cross-pollinate</u> \rightarrow <u>hybrids</u>

Mendel Described Particulate Inheritance = <u>Traits are inherited</u> as "particles" from parents

Now we call Mendel's "particles" genes

<u>Genes = pieces of DNA on chromosomes</u>

Cells of sexually reproducing organisms

- Body cells have <u>2</u> copies of gene
- Why?
- <u>One copy from each parent</u>
- Gametes = <u>Eggs and Sperm</u>
- How many copies of each gene do gametes have
- Gametes = only 1 copy of each trait
- Why?
- <u>Meiosis</u> → <u>gametes</u> with ½ number of <u>chromosomes</u>

Draw and label a chromosome with lots of genes then answer questions 1-3

Genetics Vocabulary

Traits –

- characteristics determined by genes
- Hereditary molecule
 - <u>=DNA</u>

Genes =

- pieces of DNA → traits
- Found on chromosomes

Dominant Genes / alleles

• Only need one copy \rightarrow trait (ex: brown eyes

Recessive Genes / Alleles

- <u>need 2 copies \rightarrow trait</u>
- <u>ex: blue eyes (ee)</u>

Genotypes

Describes the genes inherited
Homozygous = (BB or bb)
Heterozygous = (Bb)

Phenotype

Describes a physical characteristic

Ex: brown or blue

Mendel studied 7 different traits

How Mendel Began Mendel produced pure strains by self-pollinating several generations

Genotype & Phenotype in Flowers All genes occur in pairs =2 copies (<u>one from each parent</u>)

Flower color Genotypes

R

Which genotype is dominant

R

Genotype & Phenotype in Flowers

Flower color Phenotypes R=Red r=white

Which phenotype is dominant Red

Questions

- List the possible genotypes
 - RR Rr rr
- List the possible phenotypes for each genotype
 - Red red white
- Which genotypes are homozygous
 - RR rr

Pure bred plants = homozygous

- What is the genotype for a plant that is homozygous dominant?
- RR
- What is the genotype for a plant that is homozygous recessive?
- rr

Mendel's (P₁) Pure bred Cross

- Trait = Seed Shape
- Alleles = R Round and r Wrinkled
- Cross:

Homozygous round x Homozygous wrinkled
<u>RR x</u> <u>rr</u>

Predict what the offspring will look like and what their genotype will be

Punnett Square

• Used to determine the probability of inheriting a trait

Mendel's (P₁) Pure bred Cross

- Trait = Seed Shape
- Alleles = R Round and r Wrinkled
- Cross:
- Homozygous round x Homozygous wrinkled
- \underline{RR} **x** \underline{rr}

Offspring

Genotypes:

100% Rr

Phenotypes:

100% Round

Mendel's F1 heterozygous cross

- Cut stamens to prevent self-pollination
- Cross pollinate offspring of the P1 cross

F₁ Monohybrid Cross

Х

- Trait: Seed Shape
- Genes: R Round r Wrinkled

Rr

Cross: Heterozygous x Heterozygous

<u>Offspring</u>

Rr

Genotypes: RR, Rr, rr

Genotype Ratio: 1:2:1

25% : 50% : 25%

Phenotypes: Round & wrinkled

Phenotype Ratio: 3:1

75% : 25%

Mendel's Experimental Results

Table 11.2 Ratios of Dominant to Recessive in Mendel's Plants

Dominant trait	Recessive trait	Ratio of dominant to recessive in F ₂ generation
Smooth seed	Wrinkled seed	2.96:1 (5,474 smooth, 1,850 wrinkled)
Yellow seed	Green seed	3.01:1 (6,022 yellow, 2,001 green)
Inflated pod	Wrinkled pod	2.95:1 (882 inflated, 299 wrinkled)
Green pod	Yellow pod	2.82:1 (428 green, 152 yellow)
Purple flower	White flower	3.14:1 (705 purple, 224 white)
Flower on stem	Flower at tip	3.14:1 (651 along stem, 207 at tip)
Tall stem	Dwarf stem	2.84:1 (787 tall plants, 277 dwarfs)
	Average ratio, all traits:	3:1

Mendel's hybrid cross results

- Expected is 3 round :1 wrinkled
- Mendel observed ratio \rightarrow 2.96:1
- The discrepancy is due to statistical error
- The larger the sample size the closer you get to expected ratio

Remember

More times you repeat an experiment → more accurate results

Following the Generations

Cross 2ResultsCross 2 HybridsPurein allgetPlantsHybrids3:1 (tall:Short)TT x ttTt1TT, 2Tt, 1tt

Genes and Environment Determine Characteristics

Remember: the <u>environment controls gene expression</u>

Open notes quiz

Mendel's Laws

1) Law of Dominance

Pure bred cross experiments → law of dominance

2) Law of Segregation

a) <u>Meiosis</u> \rightarrow gametes with one copy of <u>each gene</u>

b) Genes are "<u>recombined</u>" at fertilization,
 → Offspring = <u>2copies of each</u>

Applying the Law of Segregation

3) Law of Independent Assortment

- Different traits are sorted out independently →
- every gamete is different

Exceptions to Mendel's laws

Some traits = controlled by multiple genes Ex: <u>eye color</u>

Incomplete dominance

- Neither trait is dominant
- Ex: Red flowers + white flowers \rightarrow

<u>Codominance</u>

- Both traits get expressed
- Ex: <u>AB blood types</u>

Do the codominance problems in notes

• Father (homozygous B) X Mother (heterozygous A)

Do 2 practice problems in notes

Sex Linked traits

- Answer video questions in notes
- Meal worm body cells = $\underline{20}$
- Meal worm egg cells = $\underline{10}$
- Meal worm sperm cells = $\underline{10}$
- Difference =
- <u>males have one small chromosome</u>

- <u>Sex linked traits</u> = traits (genes) found on sex chromosomes
- Sex chromosomes are X and Y
- Females have <u>XX</u>
- Males have <u>XY</u>

Example: White eye color in fruit

XX chromosome - female

Xy chromosome - male

- Males only get 1 copy of the gene
- Females get 2

Sex-linked recessive traits

- More common in <u>boys</u>
- Because they only need to inherit one

REMEMBER

- GENES are on CHROMOSOMES
- X and Y are different types of sex chromosomes

Ishihara Color Blindness Test Plate 1 Ishihara Color Blindness Test Plate 4

Ishihara Color Blindness Test Plate 2 Ishihara Color Blindness Test Plate 5

Ishihara Color Blindness Test Plate 3 Ishihara Color Blindness Test Plate 6

Sex-linked Trait Problem

Example: color blindness in humans is sex-linked

XX chromosome - female

XY chromosome - male

Sex-linked Trait Problem

- Example: color blindness
 - **R** = normal color vision
 - **r** = color blind
- normal male x color blind female X^RY x X^rX^r

Sex-linked Trait Solution:

Normal vision father → <u>all</u> <u>daughters =</u> <u>normal vision</u>

Color blind mother → <u>all</u> <u>sons colorblind</u>

Pedigree Charts

- Diagrams to follow traits through generations.
- For recessive traits carriers have one copy of the trait but are not affected

Female Carriers

Answer animation questions in notes

Practice questions in notes