Matter and Energy

Matter

• Made of atoms

Type of atom determined by # protons = atomic number

Atomic mass = <u>Neutrons + Protons</u>

- Problem 1 how many protons in C¹⁴
- 6 protons
- How many neutrons
- 14-6 = 8 neutrons
- Problem 2 how many protons in tritium H³
- 1 proton
- How many neutrons
- 3-1 = 2 neutrons

Add or subtract neutrons \rightarrow <u>isotopes</u>

Add or subtract electrons \rightarrow ions = charged particles

Metals like to lose electrons \rightarrow + cations

Nonmetals like to gain electrons ightarrow - anions

Atoms combine \rightarrow

- <u>Molecules</u> = two or more atoms bound together (same or different)
 Ex: <u>O₂ and H₂O</u>
- <u>Compounds</u> = two or more different atoms bound together in a specific proportion
 - ex: <u>H₂O, CO₂</u>

Chemical bonds holds atoms together

- 1. Ionic = transfer of electrons (metal nonmetal)
 - Ex: salts (NaCl, CaSO₄...)
- 2. Covalent = sharing electrons (organic molecules)
 - Ex: hydrocarbons (CH₄, benzene...)

Chemical bonds between molecules

• Hydrogen bonds = intermolecular forces \rightarrow waters unique properties

Properties of water

- <u>Surface tension (allows boats to float)</u>
- High specific heat (acts as a heat sink)
- Universal solvent (dissolves polar/charged solvents)
- Quick review:
- Define transpiration

Physical changes \rightarrow change of state

Increasing entropy

- Melting $(s \rightarrow I)$
- Evaporation $(I \rightarrow g)$
- Sublimation $(s \rightarrow g)$

Decreasing entropy

- Condensation
- Freezing
- Deposition

• Energy required

• Energy released

2 types of compounds

- Organic (<u>contain C and H</u>)
 - Hydrocarbons (methane, propane, gasoline, diesel, alcohols...)
 - Carbohydrates (sugars)
 - Fats (lipids)
 - Proteins
 - Nucleic acids (DNA and RNA)
- Inorganic (everything else)
 - Salts
 - Acids and bases
 - Review what is an acid?

Chemical bonds = potential energy

homes and businesses

Break bonds → Release energy

• Combustion = breaking bonds \rightarrow releases heat and light energy

Organic compound = lots of energy

- Organic compounds found in living things
 - Carbohydrates (glucose, starch, cellulose...)
 - Proteins (enzymes, make up organisms)
 - Lipids (fats and oils)
- Hydrocarbons (methane, butane, propane...)
- Alcohols (methanol, ethanol...)
- Coal, oil, natural gas

Fuels from biomass

BIOMASS

Energy Laws

- First law of thermodynamics
- Energy can not be created or destroyed
- Second law of thermodynamics
- <u>All energy transformations lose energy (usually as heat)</u>
- <u>No energy transformation is 100% efficient</u>
- Systems go spontaneously in the direction of increased entropy = decreased order

10% rule = 90% loss at each trophic level

Energy efficiency = % energy \rightarrow work

- Energy efficiency = <u>useful energy out / total energy in x 100</u>
- Less than 50% for most systems

Plants capture sunlight energy \rightarrow glucose energy

- Only ~ 1% efficient
- C3 plants = most efficient
- C4 plants incorporate carbon faster in sunny dry regions (corn, sugar...)
- CAM plants are adapted to arid regions (ex: cactus)

Energy Laws and Energy Efficiency

Student activity worksheet

TABLE 15.1 Examples of First- and Second-Law Efficiencies

Energy (end use)	First-Law Efficiency (%)	Waste Heat (%)	Second-Law Efficiency (%)	Potential for Savings
Incandescent light bulb	5	95		
Fluorescent light	20	80		
Automobile	20-25	75-80	10	Moderate
Power plants (electric); fossil fuel and nuclear	30-40	60-70	30	Low to moderate
Burning fossil fuels (used directly for heat)	65	35		
Water heating			2	Very high
Space heating and cooling			6	Very high
All energy (USA)	50	50	10-15	High

Whole systems

• When comparing energy products or system it is important to consider the whole system

Current systems = linear

TRADITIONAL AGRICULTURE

A BIOBASED INDUSTRIAL ECOLOGY

Systems Approach

Industrial Ecology: a

system model that uses the waste stream of one process as a feedstock for the next process all along the value-added chain

Current food waste system is linear and unsustainable

NOW

Trucks \rightarrow Food \rightarrow transfer station \rightarrow landfill

Anaerobic Digester Plan = whole system

Recycles matter and Captures wasted energy

AFRI Competitive Grant no. 2011-67009-30055

Composting recycles nutrients energy still lost

Types of energy inputs humans need

- Food
- Transportation
- Heating
- Electricity

Earth ship = house as a whole system

Measuring Energy

- There are 4 units which are commonly used:
 - Calories, Joules, Btu's, Watts
- REMBER kilo = thousand (10^3), mega = million (10^6), giga = billion (10^9)

Calories (cal)

- Energy it takes to raise one gram of water one ^oC
 - Measures food energy
 - 1 kilocalorie (Cal) = 1000 calories

Joules (J)

• <u>Joules</u> (J): Measure work (4.18 Joules = 1 calorie)

British Thermal Unit (btu)

- Amt. of heat needed to heat 1 pound of water 1°F
 - Used to measure heat value of firewood and other fuels in North America
Electrical power is measured in watts (W)

 ex: a 2MW wind turbine is capable of producing 2MW at any given time

Electrical energy is measured in watt hours (wh)

 ex: the maximum amount of energy you can get from a 2MW turbine in one hour = 2MWh

Calculating Energy Used

- Energy to lift an object to a height (E=mgh)
 - E(J) = mass(kg) x gravity(9.8m/s²) x height(m)
- Heat (E=mc∆T)
 - E(J) = mass(g) x specific heat constant(J/g°C) x change in temp(°C)
- Electrical energy (E=Pt)
 - E(J) = power (kilowatts) x time (hours)
- Chemical energy of gasoline
 - $E(J) = 37 \times 10^6 J/L \times number of L of gasoline burned$

Energy Consumption in the US

Energy consumption in the United States (1776-2015) quadrillion Btu

Energy Timeline

- Pre-1885 = Wood is primary energy source for cooking, heating, light, trains and steamboats
- 1885-1950 = Coal was the most important source of fuel (1/2 ton of coal → as much energy as 2 tons of wood)

- 1951-present = Oil has become the most widely used energy source (automobiles inc. demand for oil)
- 1957 = first commercial nuclear power plant began operating \rightarrow electricity (Calder Hall, England) (1st in Us = 1959 in Il.)

Sources of Energy

Non-Renewable

- Fossil fuels (Peat, Coal, Oil, Gas)
- Uranium (nuclear)

Renewable

- Solar
- Wind
- Geothermal
- Biomass (wood, charcoal, ethanol...)
- Hydro
- Ocean (wave and tidal)

U.S. energy consumption by energy source, 2015

Note: Sum of components may not equal 100% because of independent rounding.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1 (April 2016), preliminary data

What happened to each

- Coal
- Decrease from $21\% \rightarrow 16\%$
- Natural gas
- Increase from $25\% \rightarrow 29\%$
- Renewables
- Increase from 8% \rightarrow 10%

Which renewable sectors grew the most and why?

- Increase in wind and solar
- Incentives (ex: Production tax credits)

Primary energy consumption by source and sector, 2014 quadrilion Btu

Where does most of the oil go

- Transportation (cars)
- Industry (plastics)

http://www.geo.cornell.edu/eas/energy/the challenges/peak oil.html

Oil supplies are depleting what is the best way to decrease our need for oil?

- Alternative forms of transportation
- Decrease use of plastic

Nuclear \rightarrow electricity and thermal pollution What is a more efficient whole systems approach?

- Co-generation
- Use waste heat to heat buildings

End-Use Sector Shares of Total Consumption, 2011

Residential and commercial Energy Consumption

- Heating, cooling, running appliances
- Hot water and space heating = most energy intensive

Heating options

<u>Nonrenewable</u>

- Natural gas
- Oil and kerosene
- Both \rightarrow air pollution
- Ex:
- (global warming, acid rain, smog)

• <u>Renewable</u>

• Biomass

- Wood fuels can → deforestation & air pollution
- Ethanol and crop based fuels can → increase burden on farmable land & some air pollution

Most sustainable options

- Geothermal heat exchange
- Smart building design and passive solar

Energy Conservation

- Weatherization programs offer low income families help in permanently reducing energy bills by weatherizing
- Low flow shower heads cut down on hot water consumption
- Recycling can decrease energy consumption
 - <u>Bauxite \rightarrow Al (requires 20x's more energy than recycling)</u>
 - recycling Al \rightarrow 95% less air pollution
 - Iron ore \rightarrow steel
 - Recycled steel uses 33% less energy

Lighting

- Incandescent bulbs = 5-10% efficient
 - 90% energy \rightarrow waste heat

photo credit: National Renewable Energy Laboratory

- Compact fluorescent = more efficient and last longer but contain small amounts of Hg
 - (BUT less electricity = less coal burning = less Hg emissions)
- LED lighting (ex: Christmas tree lights) = last longer and more efficient than CFL's (less energy) but more expensive

Appliances

- 1990 National Appliance Energy Conservation Act → strict efficiency standards
- Look for Energy efficiency ratings (EER) - to compare appliances

Energy Star Program = government program \rightarrow identifies products that are significantly more efficient than standard models

Ex: front loading washing machines (40% less water and 60% less energy

End-Use Sector Shares of Total Consumption, 2011

Energy – intensive industries:

- Oil refining
- Steel (less energy to recycle)
- Aluminum (made from bauxite) (recycling requires 95% less energy)
- Paper (recycling dec. solid waste and tree harvesting, but uses = amounts of energy)
- Chemical manufacturing many chemicals come from petroleum
- Food industry \rightarrow organic wastes (potential fuel source)

Ways to decrease industrial consumption

- <u>Cogeneration increases efficiency</u>
 - <u>1 fuel → heat and electricity</u>
- **Recycling** can **decrease** industrial energy **consumption**
- Can burn wastes \rightarrow fuel
 - (BUT \rightarrow air pollutants)

Cogeneration \rightarrow District Heating in Finland

- District heating warms 44% of the buildings in Finland
- 72% of district heat was produced by CHP (cogeneration electrical plant) in 1993.
- Other industries produce heat that is fed into the system (computer networks, sewage treatment plants, paper industry...)

Transportation

- Most of our oil consumption \rightarrow transportation
- Most oil imported
 - Domestic production mainly Alaska (very fragile ecosystems due to slow decomposition and low species diversity)
- Per capita consumption = per person
 - US Population ~ 325 million
 - World population ~ 7 billion

4 problems with burning fossil fuels

- Depletes nonrenewable resource
- \rightarrow CO2 \rightarrow global warming
- \rightarrow SOx and NOx \rightarrow acid rain
- \rightarrow particulates \rightarrow smog

Alternatives

- Hybrids (2 motors electric and gasoline)
 - More efficient, still use gas
- Electric
 - Pollution switches from dispersed source to a point source (power plant \rightarrow emissions)
 - Must ask where electric power is coming from (US currently 60% coal, 23% nuclear)
- Ethanol = produced from biomass (corn, sugar cane, wood pulp...) Fermentation (anaerobic respiration) → alcohols but bacteria use lots of the energy
 - Note: **plants are only 1% efficient** at converting light → chemical energy.
 - Cleaner burning than gasoline
 - Greenhouse emissions offset by plant growth \rightarrow fuel
 - Growing crops for fuel requires energy and land
- Hydrogen fuel cells (need H source and energy to isolate H)

Electricity is a secondary energy source why?

- Need energy \rightarrow electricity
- Every energy conversion = loss = decrease in efficiency

Technologies→ electricity

- Photovoltaic (pv) cells
- Batteries (lead acid, cadmium, lithium-ion)
- Hydrogen fuel cells
- Each rely on chemical reactions and properties \rightarrow electron flow

- Steam generators
- Wind turbine
- Water powered turbine
- Each rely on spinning a coil of wires around a magnet

Sources of U.S. electricity generation, 2015

Source: U.S. Energy Information Administration, Electric Power Monthly, February 2016. Preliminary data for 2015

Renewables \rightarrow 28% Germany's electricity (2014)

Energy mix in Germany 2014

Source: Fraunhofer ISE, January 2015

Florida's Generation Mix, 2013

Net summer capacity in California Independent System Operator, June 2016

megawatts total = 63,397 megawatts

Sources of Electricity in New York

- Nuclear 31.6%
- Coal 3.4%
- Natural Gas 39.6%
- Hydroelectric 18.4%
- Renewable and Other 5.5%
- Oil 1.6%

23.9%

Source: U.S. Energy Information Administration, 2014

What is necessary \rightarrow states and governments transition to renewable electric generation?

- Renewable energy portfolios and standards
- Renewable energy credits (RECs)
- Production tax credits
- Economic Incentives

States and territories with Renewable	States and territories with a voluntary	States and territories with no standard
Portfolio Standards	renewable energy standard or target	or target

Florida does not have a renewable portfolio standard

California	Renewables Portfolio Standard	33% by 2020 40% by 2024 45% by 2027 50% by 2030	2013 amendment allows the California Public Utilities Commission to adopt additional requirements.	<u>Cal. Public Utilities Code</u> §399.11 et seq.; <u>Cal. Public Resources</u> <u>Code §25740 et seq.;</u> <u>CA A 327</u> (2013)
------------	-------------------------------------	--	---	--

New York	Renewable Portfolio Standard; Reforming the Energy Vision (REV)	29% by 2015; 50% by 2030 (REV- <i>currently in</i> <i>process</i>)	Distributed Generation: 8.4% of annual incremental requirement.	<u>NY PSC</u> Order Case 03-E-0188; 2015 New York State Energy Plan
----------	---	--	---	--
Photovoltaics

- Requires a semi-conductor (Si)
- Creates a direct current (DC) which can
 - Be stored in batteries
 - Or converted to a conventional <u>alternating current (AC)</u>
 - Or used to split water (electrolysis) → Hydrogen gas (stored fuel for fuel cells)
- Typical PV cell has a 15-20% efficiency

Batteries

- Electrochemical reaction \rightarrow flow of electrons
- REDOX reactions
- Electrons flow from negative (anode) terminal to positive (cathode)

Photovotaics and batteries \rightarrow DC current

- Direct current
- Electrons flow in 1 direction

NiCd battery

- Cathode = nickel oxide
- Anode = cadmium compound
- Electrolyte = potassium hydroxide (alkaline = strong base)
- Pros = <u>rechargable</u>
- Cons = <u>Cd is toxic heavy difficult to dispose safely</u>

Lithium-ion battery

- Cathode = lithium-cobalt oxide (LiCoO₂) or, in newer batteries, from lithium iron phosphate (LiFePO₄).
- Anode = graphite (carbon)
- Electrolyte = varies from one battery to another
- Pros =
- Most energy dense battery on the market today
- Cons =
- Less toxic but can overheat and catch on fire

Turbine - Generator

- Steam turns turbine
- Turbine spins wire loop in a magnetic field
- \rightarrow flow of electrons

9 ways \rightarrow turn a turbine \rightarrow electricity

- Nonrenewable
 - Nuclear reaction
 - Coal
 - Natural gas
 - oil

- Renewable
 - Wind
 - Hydro
 - Solar thermal generation
 - Biomass (wood, biogas...)
 - Geothermal

Most powerplants \rightarrow AC current

- Alternating
- Advantage = easier to step up or step down current with transformers

Electric power transmission

- AC current is converted to high voltage (10⁶volts)
- Higher voltage = more efficient = less energy loss

Transformers increase and decrease voltage

- Voltage is decreased to about 1000 volts at a substation for transmission
- Then down to 120 volts in homes

