Unit 4 Cells, Organelles and Life Functions

Part 1: History of cells and cell theory

Before the Scientific Revolution

1. Before the Scientific Revolution the Church and kings made decisions on widely accepted theories

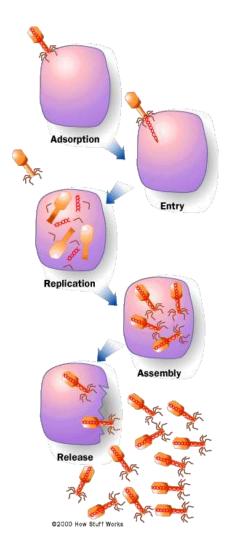
Scientific Revolution

- 2. Occurred from 1500-1700
- 3. After the Scientific Revolution theories were based on **observations** and **logic**

- **4.** <u>Copernicus</u> → <u>heliocentric theory</u> (sun centered solar system) (1543)
- 5. <u>Anton VanLeewenhoek</u> → first functional microscopes (1680's)

Early discoveries

- 6. Hooke gave cells their name (1665)
- 7. Robert Brown \rightarrow nucleus (1883)
- 8. Schwann and Schleidan \rightarrow <u>Cell Theory</u>
- 9. Charles Darwin → Theory of Evolution (1859)
- 10. Watson and Crick → structure of DNA (1950's)


Cell Theory

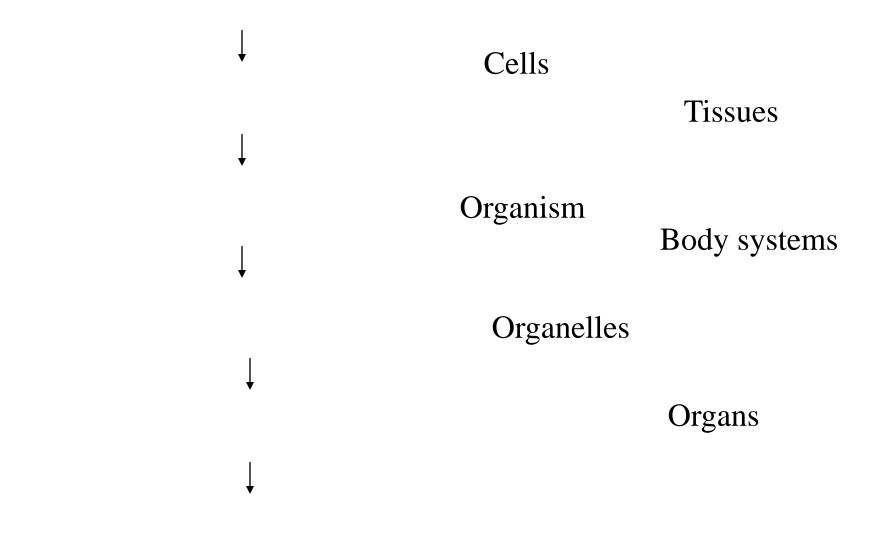
- 1. All living things are made of cells
- 2. The cell is the basic unit of function for <u>life</u>
- 3. All cells come from pre-existing cells

Problems with the cell theory

1. <u>Viruses = not</u> made of cells

2. Where did the first cell come from?

Living things


- 1. Are made of cells
- 2. Must be able to obtain energy
 - Energy processes = <u>photosynthesis and</u> <u>respiration</u>
- 3. Maintain <u>homeostasis</u> (same state)
 - Ex: body temp, glucose levels...
- 4. Reproduce (because DNA can replicate)

Organization of living things

- Organelles = things in a cell \rightarrow specific job
 - Ex: <u>nucleus</u>, <u>ribosome</u>, <u>mitochondria</u>, <u>chloroplast</u>...
- Cells = basic unit of life
- <u>Unicellular</u> = <u>1 cell</u> organisms
- Multicellular = many celled (note: all cells have same DNA but look and function differently)
- How??
- <u>Differentiation = environment controls gene</u> <u>expression</u>

https://www.youtube.com/watch?v=82kZMw0Z8Z4

Smallest

Biggest

Simple vs complex

- Prokaryotes = no nucleus
 - (bacteria) monera kingdom
- Eukaryotes = nucleus
 - (protists, animals, plants, fungi)

Obtaining energy

- Autotrophic nutrition = <u>photosynthesis</u>
 - Occurs in <u>chloroplasts</u>

Raw materials	products
H ₂ O + CO ₂ + light energy	$C_6H_{12}O_6 + O_2$
Inorganic	organic

Chemosynthesis = bacteria make organic
compounds using chemical energy

Obtaining energy

- Heterotrophic nutrition = getting food by consuming other organisms
- Involves <u>digestion</u> and <u>respiration</u>

Respiration releases energy

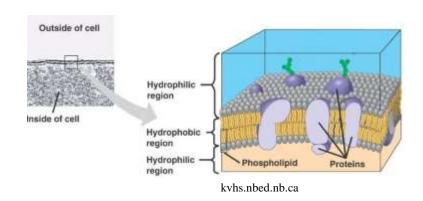
• Aerobic = with oxygen

Raw materials	Products
$O_2 + C_6 H_{12} O_6$	$CO_2 + H_2O + ATP$
Stored energy	Usable energy

- Anaerobic = without oxygen \rightarrow less energy
 - − Produces <u>lactic acid</u> → <u>muscle fatigue</u>

Organelle Chart

https://www.youtube.com/watch?v=82kZMw0Z8Z4


Cell Membrane

Job

- Controls what goes in and out
- Separates cell from environment
- Communicates (receptor proteins receive messages)

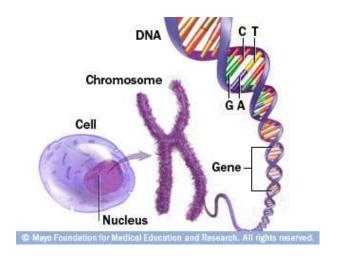
Structure

Phospholipid bilayer with proteins

Body system / organ

- Respiratory system
- Excretory system

- Lungs
- Kidneys


Nucleus (eukaryotes only)

Job

- Contains DNA
- Information for protein synthesis
- Controls cell functions

Structure

- DNA → genes → nucleus
- Surrounded by membrane

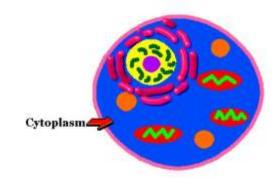
Body system/organ

Nervous system

Brain

Cytoplasm

Job


- Site of chemical reactions
- Moves / Circulates
- Transports things

Body system / organ

- Circulatory system
- Lymphatic system

Structure

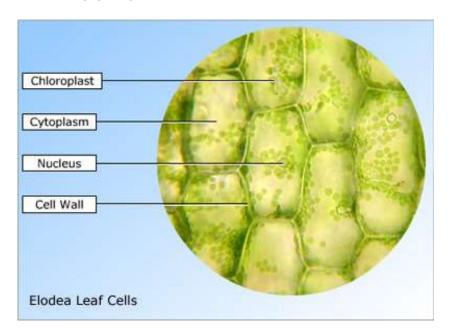
Jelly like

- Blood
- lymph

Plant Organelles

Cell Wall

Job

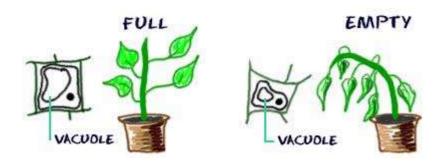

- Give plant cells definite shape
- Protect → strength

Body system / organ

Skeleton / bones

Structure

- Made of cellulose (complex sugar)
- Found on all plant and
- some protist and bacterial cells


Vacuoles

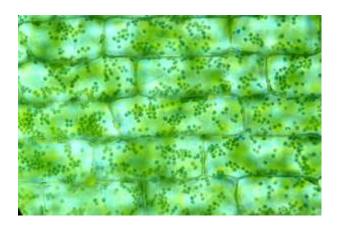
Job

Store water and food

Structure

- Large in plant cells
- Contains starch and water

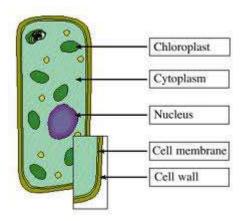
Body system / organ


• Liver stores sugars in animals

http://www.biology4kids.com/files/cell_vacuole.html

Chloroplasts

Job


- Site of photosynthesis
- Light → chemical energy
- Inorganic → organic

scar.utoronto.ca

Structure

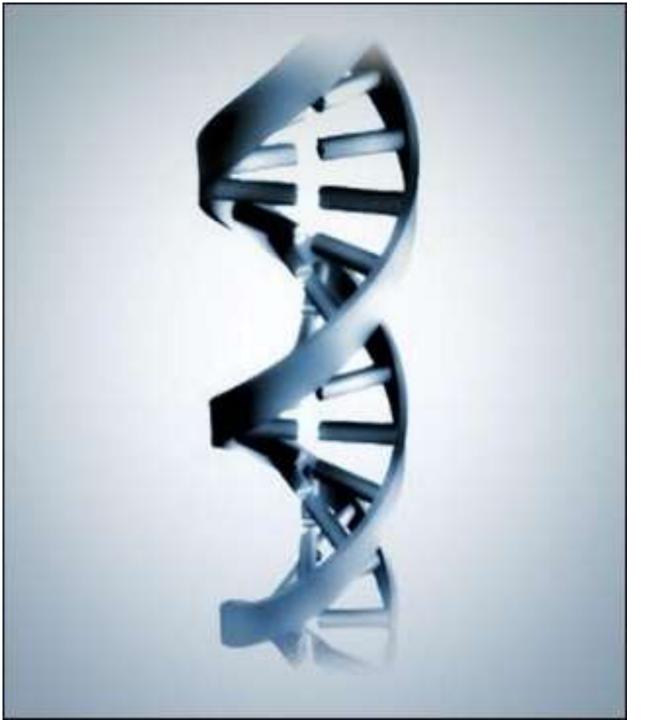
- Rod shaped
- Contains DNA
- Contains pigments (chlorophyll)

Energy Organelle

Mitochondria

Job

- Site of aerobic respiration
- Found in plant and animal cells
- Release energy
 - Glucose \rightarrow ATP
- Powerhouse
 - Mighty Mitochondria


Structure

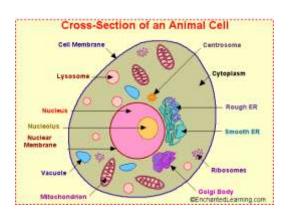
- Small, rod-shaped
- Contains DNA
 - Can replicate

Energy and Protein Organelles

DNA

Ribosomes

Job


• Site of protein synthesis

Body system / organ

Liver manufactures lots of proteins

Structure

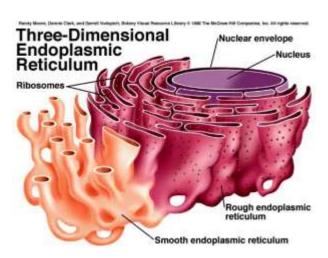
- Small, round
- Attached to ER or free in cytoplasm

babeled.com

Protein Processing Organelles

Endoplasmic reticulum (ER)

Job

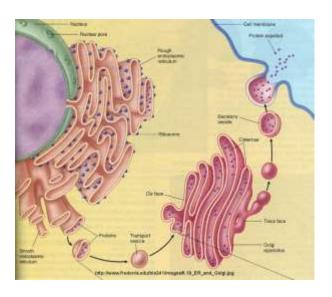

- Transport
- Moves proteins through cell

Body system / organ

Circulatory system

Structure

 Series of tubes and membranes attached to nucleus


Golgi apparatus

Job

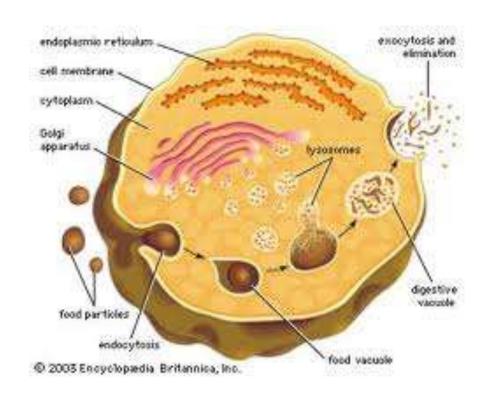
Folds proteins → specific shape

Structure

- Smaller stack of tubes and membranes
- Not attached to nucleus

Lysosome

Job


Digestion

Body system / organ

- digestive system /
- stomach

Structure

 Contains lots of enzymes and acids

https://www.youtube.com/watch?v =7bDpYZsC8mQ