Excretion

Organs involved

Skin (sweat glands)

Excretion

 Excretion = Getting rid of <u>cellular waste</u> = <u>metabolic wastes</u>

- Excretion ≠ Egestion
 - Excretion removes wastes produced during chemical reactions
 - <u>Metabolism</u> = all the chemical reactions needed to survive
 - Egestion removed unused food leftover after digestion.

Things We Excrete

Chemical reactions \rightarrow wastes

- Aerobic cellular Respiration
- Formula =

 $-C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + ATP$ (energy)

- WASTES =
 - $-CO_{2}$
 - $-H_2O$
 - Heat

Lungs excrete CO₂ and H₂O

And heat

Respiration wastes

1. CO₂ and H₂O diffuse from <u>cells</u> to <u>blood</u>

CO_2 and H_2O

- 2. Travel to lungs
- 3. <u>diffuse</u> from <u>blood</u> to <u>alveoli</u>
- 4. exhaled

Diffusion in lungs

Alveoli surrounded by <u>capillaries</u> gases diffuse between them

Some reactions → nitrogenous wastes

 – <u>Nitrogenous wastes</u> come from the breaking down of <u>amino acids</u> (protein building blocks)

Types of nitrogenous wastes

- Fish \rightarrow <u>ammonia</u>
- Birds and insects \rightarrow <u>uric acid</u>
- Humans convert uric acid → <u>urea</u>
 Note: gout = build up of uric acid in joints

Liver → urea from amino acids Kidneys excrete urea

Liver change nitrogenous wastes to urea → diffuses into blood

2. Blood plasma transports urea to kidneys

- 3. Diffuses into nephrons
 - (part of kidney surrounded by capillaries)

4. Excreted as urine or sweat

Urine

• <u>Kidneys</u> \rightarrow <u>urine</u>

– We have 2 kidneys

- <u>Ureters</u> = connect kidneys to bladder
- Urinary <u>bladder</u> stores urine
- <u>Urethra</u> = "<u>thr</u>usts" urine out of body

Excretory system

http://kidney.niddk.nih.gov/kudiseases/pubs/uti_ez/images/urinary.jpg

Jobs of Kidneys Kidneys filter blood and → urine

Jobs of Liver

- Liver → bile to break down <u>fats</u> and <u>neutralize</u> stomach acid
- Break down amino acids \rightarrow <u>urea</u>
- Detox center (removes and breaks down medicines, alcohol and drugs)
- Recycle red blood cells
- Make lots of proteins

Most chemical reactions \rightarrow <u>waste heat</u>

- Energy transformations \rightarrow heat.
- Muscle cells have lots of <u>mitochondria</u> for <u>respiration</u> → <u>ATP and heat</u>

- Body removes heat by sweating
- Sweat removes <u>water, heat, urea,</u> <u>and salts</u>

Failure to maintain homeostasis

- Liver diseases
 - <u>Cirrhosis</u> = caused by excessive alcohol → toxins build up in blood → jaundice (yellowing)
 - <u>Hepatitis</u> = inflamation of liver (virus)
 - <u>Gout</u> = hereditary or alcoholism → can't break down uric
 acid → builds up in joints → pain
- Kidney diseases
 - Kidney stones = calcium deposits
 - Kidney failure \rightarrow death (can treat with <u>dialysis</u>)
 - <u>https://www.youtube.com/watch?v=fKlY2SKi_dk</u>

<u>Placenta</u>

- Organ → <u>excretion and nutrition in developing</u>
 <u>babies</u>
- <u>Nutrients and wastes diffuse</u> between mother and baby
- Molecules diffuse back and forth but the blood cells do not mix

Study Guide for Test Wednesday digestion and excretion

Excretory system

Digestive System

Small intestines

Enzymes

- Bind to specific substrates
- Optimum pH and temperature
- Enzyme activity decreases higher or lower than optimum.

State one specific function of each organ

- Kidneys
- Bladder
- Stomach
 - Liver
- Pancreas
- Large intestines
- Small intestines

List life functions involved in getting and using energy

Experimental design

- Thing being measured in an experiment = _____variable
- Thing being tested = _____ variable

- For each state control group, experimental group, and what will be measured.
- Does fertilizer cause algae to grow
- Does oil prevent birds from flying