Claim Evidence Reasoning Activity

The effect of CO₂ on temperature

Vocabulary

- Ecosystems
- Biotic factor
- Abiotic factor

Water

Abiotic factor

Acorn seed

Forrest

Ecosystem

Bacteria

Biotic Factor

Pond

Ecosystem

Wind

Abiotic factor

Animal

Biotic factor

Sunlight

Abiotic factor

Why is Earth the only planet filled with life?

<u>Atmosphere</u> → right amount of solar energy (not too much and not too little)

Venus

Earth

Carbon Dioxide (CO ₂)	96.5%	0.03%
Nitrogen (N ₂)	3.5%	78%
Oxygen (O ₂)	Trace	21%
Argon (Ar)	0.007%	0.9%
Methane (CH ₄)	0	0.002%

What is our atmosphere made mostly of?

• Nitrogen and oxygen

What is the atmosphere of Venus made mostly of?

• Carbon dioxide

Set up an experiment to determine the **effect of** CO₂ on global temperature

- Independent variable
- Dependent variable
- Control group
- Describe how you can test this theory
- Make a claim
- Gather evidence

Mercury 333° F

Venus +855° F

Earth 59° F

Levels of Organization

Levels of Organization in Ecosystems

Population

- <u>= all the members of 1</u> <u>species in 1 area</u>
- •Example
- <u>moose in the</u> <u>Adirondacks</u>

Community

- many populations interacting
- Example:
- Herbivore communities in a grassland

Ecosystem

- biotic and abiotic factors interacting in a given area.
- Examples:
- forest, pond

Biosphere = portion of Earth that supports life

Types of organisms in an ecosystem

Type of organism	Job in ecosystem	Example
Producers = Autotrophs	Make energy rich food from abiotic factors	Plants Algae

Type of organism	Job in ecosystem	Example
Consumer = Heterotrophs	Cannot make their own food need to eat other organisms	Animals, fungi, decomposers

Heterotroph

Type of organism	Job in ecosystem	Example
Herbivore	Type of consumer that eats only plants	Deer Rabbits

Type of organism	Job in ecosystem	Example
Omnivore	Type of consumer that eats plants and animals	Bear Raccoon

Type of organism	Job in ecosystem	Example
Carnivore	Type of consumer that eat animals only	Lion, tiger, annacondas

Type of organism	Job in ecosystem	Example
Decomposers	Organisms that break down dead organisms Job = <u>Recycle Nutrients</u>	Bacteria and fungi

Type of organism	Job in ecosystem	Example
Predators	Animals that hunt and kill prey	Lion

Type of organism	Job in ecosystem	Example
Prey	Animal that gets hunted	Mouse

Finish Unit 1 habitable worlds part 2 notes

The Carbon Cycle

 2 processes affecting the carbon cycle = Photosynthesis and Respiration

Formula for photosynthesis (process that happens in plants)

Formula for respiration (process plants and animals use to release energy)

Cell Respiration Formula

C6H12O6 + 6O2 ->6CO2 + 6H2O + ATP Glucose Oxygen Carbon Water Energy Dioxide

Carbon Cycle

- Carbon cycles between air, land and organisms
- All living things contain carbon
- Fossil fuels (coal, oil, gas)
 - come from <u>remains of living organisms</u>
 - All fossil fuels contain carbon
- **Photosynthesis** $\rightarrow \downarrow CO_2$ in air

Processes that release C into the air

- Aerobic Respiration organism use $O_2 \rightarrow \uparrow CO_2$ in air
- <u>Anaerobic respiration organisms without oxygen $\rightarrow \uparrow$ methane in air (CH₄)</u>
- **Decomposition** $\rightarrow \uparrow CO_2$ in air
- Combustion (burning) $\rightarrow \uparrow CO_2$ in air
- Volcanoes release carbon

Note only 2 ways to take carbon out of air

- Photosynthesis = process that pulls carbon out of the air.
- Therefore <u>plants and forests</u> = <u>carbon sinks</u>
- Air mixes with the ocean
- Therefore <u>the ocean = carbon sink</u>
- when CO₂ enters the ocean it forms carbonic acid

PHOTOSYNTHESIS

 $\bigcap_{i=1}^{n}$

Burning fossil fuels \rightarrow CO₂

Anaerobic respiration organic molecules \rightarrow CH₄

gaseous methan

solid

methane hydrate

Aerobic Respiration Glucose to CO₂

Decomposition organic compounds \rightarrow CO₂

Human impacts on the Carbon cycle

$CO_2 CH_4$, H_2O , $NO_x = greenhouse gases$

• Gases that trap heat near surface of Earth

IS THE GREENHOUSE EFFECT GOOD OR BAD???

Atmospheric CO₂

Data analysis questions

There are 2 time periods when the emissions rose

- When did atmospheric carbon emissions first begin to rise?
- 1850
- When did the rate of carbon emissions go up steeply
- 1950
- What was happening in the world during those times in history that might have caused the increase?
- 1850s = industrial revolution burning coal
- 1950s = oil \rightarrow gasoline for cars \rightarrow increased transportation

Climate Forcings (things that impact climates)

- How much as climate changed from 1900 1990?
- Increased about 0.5°C
- What do sulfates and volcanos do to weather
- Decrease temperatures
- What do GHGs do to climate?
- Increase temperatures

Atmospheric CO₂ levels

- Pre-industrial =
- <u>280 ppm</u>

Atmospheric CO₂ levels today

Why??????

- Burning fossil fuels
- Deforestation

2007 IPCC Data indicates a <u>0.74°C rise in global</u> averages over the past century

- This image shows the instrumental record of global average <u>temperatures</u> as compiled by the <u>NASA</u>'s <u>Goddard Institute for Space Studies</u>. The <u>data set</u> used follows the methodology outlined by Hansen et al. (2006). Following the common practice of the <u>Intergovernmental Panel on Climate Change</u>, the zero on this figure is the mean temperature from 1961-1990.
- Image created by Robert A. Rohde.

Global Temperature Time Series

Earlier spring snow melt in Barrow, Alaska

http://www.esrl.noaa.gov/gmd/grad/snomelt. html

Shrinking of polar ice sheets

- If the total sea ice extent in 1987 was 7.5 million square km and the 2007 value was 4.3 million square km, how much sea ice has been lost within this time period? (show your math)
- 7.5 million = 7.5 x 10⁶
- 4.3 million = 4.3×10^6
- Difference = $3.2 \times 10^6 \text{ km}^2$

Why??????

- Burning fossil fuels
- Deforestation
<u>Humans</u> have a greater impact on ecosystems than any other organism due to their <u>ability to alter their</u> <u>environment</u>

